\(\int \frac {1}{(d+e x)^3 (a^2+2 a b x+b^2 x^2)} \, dx\) [1513]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [B] (verification not implemented)
   Sympy [B] (verification not implemented)
   Maxima [B] (verification not implemented)
   Giac [B] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 26, antiderivative size = 110 \[ \int \frac {1}{(d+e x)^3 \left (a^2+2 a b x+b^2 x^2\right )} \, dx=-\frac {b^2}{(b d-a e)^3 (a+b x)}-\frac {e}{2 (b d-a e)^2 (d+e x)^2}-\frac {2 b e}{(b d-a e)^3 (d+e x)}-\frac {3 b^2 e \log (a+b x)}{(b d-a e)^4}+\frac {3 b^2 e \log (d+e x)}{(b d-a e)^4} \]

[Out]

-b^2/(-a*e+b*d)^3/(b*x+a)-1/2*e/(-a*e+b*d)^2/(e*x+d)^2-2*b*e/(-a*e+b*d)^3/(e*x+d)-3*b^2*e*ln(b*x+a)/(-a*e+b*d)
^4+3*b^2*e*ln(e*x+d)/(-a*e+b*d)^4

Rubi [A] (verified)

Time = 0.06 (sec) , antiderivative size = 110, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.077, Rules used = {27, 46} \[ \int \frac {1}{(d+e x)^3 \left (a^2+2 a b x+b^2 x^2\right )} \, dx=-\frac {b^2}{(a+b x) (b d-a e)^3}-\frac {3 b^2 e \log (a+b x)}{(b d-a e)^4}+\frac {3 b^2 e \log (d+e x)}{(b d-a e)^4}-\frac {2 b e}{(d+e x) (b d-a e)^3}-\frac {e}{2 (d+e x)^2 (b d-a e)^2} \]

[In]

Int[1/((d + e*x)^3*(a^2 + 2*a*b*x + b^2*x^2)),x]

[Out]

-(b^2/((b*d - a*e)^3*(a + b*x))) - e/(2*(b*d - a*e)^2*(d + e*x)^2) - (2*b*e)/((b*d - a*e)^3*(d + e*x)) - (3*b^
2*e*Log[a + b*x])/(b*d - a*e)^4 + (3*b^2*e*Log[d + e*x])/(b*d - a*e)^4

Rule 27

Int[(u_.)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Int[u*Cancel[(b/2 + c*x)^(2*p)/c^p], x] /; Fr
eeQ[{a, b, c}, x] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p]

Rule 46

Int[((a_) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d*x
)^n, x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && ILtQ[m, 0] && IntegerQ[n] &&  !(IGtQ[n, 0] && Lt
Q[m + n + 2, 0])

Rubi steps \begin{align*} \text {integral}& = \int \frac {1}{(a+b x)^2 (d+e x)^3} \, dx \\ & = \int \left (\frac {b^3}{(b d-a e)^3 (a+b x)^2}-\frac {3 b^3 e}{(b d-a e)^4 (a+b x)}+\frac {e^2}{(b d-a e)^2 (d+e x)^3}+\frac {2 b e^2}{(b d-a e)^3 (d+e x)^2}+\frac {3 b^2 e^2}{(b d-a e)^4 (d+e x)}\right ) \, dx \\ & = -\frac {b^2}{(b d-a e)^3 (a+b x)}-\frac {e}{2 (b d-a e)^2 (d+e x)^2}-\frac {2 b e}{(b d-a e)^3 (d+e x)}-\frac {3 b^2 e \log (a+b x)}{(b d-a e)^4}+\frac {3 b^2 e \log (d+e x)}{(b d-a e)^4} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.06 (sec) , antiderivative size = 97, normalized size of antiderivative = 0.88 \[ \int \frac {1}{(d+e x)^3 \left (a^2+2 a b x+b^2 x^2\right )} \, dx=-\frac {\frac {2 b^2 (b d-a e)}{a+b x}+\frac {e (b d-a e)^2}{(d+e x)^2}+\frac {4 b e (b d-a e)}{d+e x}+6 b^2 e \log (a+b x)-6 b^2 e \log (d+e x)}{2 (b d-a e)^4} \]

[In]

Integrate[1/((d + e*x)^3*(a^2 + 2*a*b*x + b^2*x^2)),x]

[Out]

-1/2*((2*b^2*(b*d - a*e))/(a + b*x) + (e*(b*d - a*e)^2)/(d + e*x)^2 + (4*b*e*(b*d - a*e))/(d + e*x) + 6*b^2*e*
Log[a + b*x] - 6*b^2*e*Log[d + e*x])/(b*d - a*e)^4

Maple [A] (verified)

Time = 2.32 (sec) , antiderivative size = 108, normalized size of antiderivative = 0.98

method result size
default \(\frac {b^{2}}{\left (a e -b d \right )^{3} \left (b x +a \right )}-\frac {3 b^{2} e \ln \left (b x +a \right )}{\left (a e -b d \right )^{4}}-\frac {e}{2 \left (a e -b d \right )^{2} \left (e x +d \right )^{2}}+\frac {3 b^{2} e \ln \left (e x +d \right )}{\left (a e -b d \right )^{4}}+\frac {2 e b}{\left (a e -b d \right )^{3} \left (e x +d \right )}\) \(108\)
risch \(\frac {\frac {3 b^{2} e^{2} x^{2}}{a^{3} e^{3}-3 a^{2} b d \,e^{2}+3 a \,b^{2} d^{2} e -b^{3} d^{3}}+\frac {3 \left (a e +3 b d \right ) b e x}{2 \left (a^{3} e^{3}-3 a^{2} b d \,e^{2}+3 a \,b^{2} d^{2} e -b^{3} d^{3}\right )}-\frac {a^{2} e^{2}-5 a b d e -2 b^{2} d^{2}}{2 \left (a^{3} e^{3}-3 a^{2} b d \,e^{2}+3 a \,b^{2} d^{2} e -b^{3} d^{3}\right )}}{\left (e x +d \right )^{2} \left (b x +a \right )}-\frac {3 b^{2} e \ln \left (b x +a \right )}{e^{4} a^{4}-4 b \,e^{3} d \,a^{3}+6 b^{2} e^{2} d^{2} a^{2}-4 a \,b^{3} d^{3} e +b^{4} d^{4}}+\frac {3 b^{2} e \ln \left (-e x -d \right )}{e^{4} a^{4}-4 b \,e^{3} d \,a^{3}+6 b^{2} e^{2} d^{2} a^{2}-4 a \,b^{3} d^{3} e +b^{4} d^{4}}\) \(309\)
norman \(\frac {\frac {3 b^{2} e^{2} x^{2}}{a^{3} e^{3}-3 a^{2} b d \,e^{2}+3 a \,b^{2} d^{2} e -b^{3} d^{3}}+\frac {-a^{2} b \,e^{4}+5 a \,b^{2} d \,e^{3}+2 b^{3} d^{2} e^{2}}{2 b \,e^{2} \left (a^{3} e^{3}-3 a^{2} b d \,e^{2}+3 a \,b^{2} d^{2} e -b^{3} d^{3}\right )}+\frac {\left (3 a \,b^{2} e^{4}+9 b^{3} d \,e^{3}\right ) x}{2 b \,e^{2} \left (a^{3} e^{3}-3 a^{2} b d \,e^{2}+3 a \,b^{2} d^{2} e -b^{3} d^{3}\right )}}{\left (e x +d \right )^{2} \left (b x +a \right )}-\frac {3 b^{2} e \ln \left (b x +a \right )}{e^{4} a^{4}-4 b \,e^{3} d \,a^{3}+6 b^{2} e^{2} d^{2} a^{2}-4 a \,b^{3} d^{3} e +b^{4} d^{4}}+\frac {3 b^{2} e \ln \left (e x +d \right )}{e^{4} a^{4}-4 b \,e^{3} d \,a^{3}+6 b^{2} e^{2} d^{2} a^{2}-4 a \,b^{3} d^{3} e +b^{4} d^{4}}\) \(336\)
parallelrisch \(-\frac {3 a \,b^{3} d^{2} e^{3}+a^{3} b \,e^{5}+2 b^{4} d^{3} e^{2}+6 \ln \left (b x +a \right ) x^{3} b^{4} e^{5}-6 \ln \left (e x +d \right ) x^{3} b^{4} e^{5}-6 x^{2} a \,b^{3} e^{5}-6 a^{2} b^{2} d \,e^{4}+6 \ln \left (b x +a \right ) x \,b^{4} d^{2} e^{3}-6 \ln \left (e x +d \right ) x \,b^{4} d^{2} e^{3}+6 \ln \left (b x +a \right ) a \,b^{3} d^{2} e^{3}-6 \ln \left (e x +d \right ) a \,b^{3} d^{2} e^{3}+12 \ln \left (b x +a \right ) x a \,b^{3} d \,e^{4}-12 \ln \left (e x +d \right ) x a \,b^{3} d \,e^{4}+6 x^{2} b^{4} d \,e^{4}-3 x \,a^{2} b^{2} e^{5}+9 x \,b^{4} d^{2} e^{3}-6 x a \,b^{3} d \,e^{4}+6 \ln \left (b x +a \right ) x^{2} a \,b^{3} e^{5}+12 \ln \left (b x +a \right ) x^{2} b^{4} d \,e^{4}-6 \ln \left (e x +d \right ) x^{2} a \,b^{3} e^{5}-12 \ln \left (e x +d \right ) x^{2} b^{4} d \,e^{4}}{2 \left (e^{4} a^{4}-4 b \,e^{3} d \,a^{3}+6 b^{2} e^{2} d^{2} a^{2}-4 a \,b^{3} d^{3} e +b^{4} d^{4}\right ) \left (e x +d \right )^{2} \left (b x +a \right ) e^{2} b}\) \(389\)

[In]

int(1/(e*x+d)^3/(b^2*x^2+2*a*b*x+a^2),x,method=_RETURNVERBOSE)

[Out]

b^2/(a*e-b*d)^3/(b*x+a)-3*b^2/(a*e-b*d)^4*e*ln(b*x+a)-1/2*e/(a*e-b*d)^2/(e*x+d)^2+3*b^2/(a*e-b*d)^4*e*ln(e*x+d
)+2*e/(a*e-b*d)^3*b/(e*x+d)

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 495 vs. \(2 (108) = 216\).

Time = 0.27 (sec) , antiderivative size = 495, normalized size of antiderivative = 4.50 \[ \int \frac {1}{(d+e x)^3 \left (a^2+2 a b x+b^2 x^2\right )} \, dx=-\frac {2 \, b^{3} d^{3} + 3 \, a b^{2} d^{2} e - 6 \, a^{2} b d e^{2} + a^{3} e^{3} + 6 \, {\left (b^{3} d e^{2} - a b^{2} e^{3}\right )} x^{2} + 3 \, {\left (3 \, b^{3} d^{2} e - 2 \, a b^{2} d e^{2} - a^{2} b e^{3}\right )} x + 6 \, {\left (b^{3} e^{3} x^{3} + a b^{2} d^{2} e + {\left (2 \, b^{3} d e^{2} + a b^{2} e^{3}\right )} x^{2} + {\left (b^{3} d^{2} e + 2 \, a b^{2} d e^{2}\right )} x\right )} \log \left (b x + a\right ) - 6 \, {\left (b^{3} e^{3} x^{3} + a b^{2} d^{2} e + {\left (2 \, b^{3} d e^{2} + a b^{2} e^{3}\right )} x^{2} + {\left (b^{3} d^{2} e + 2 \, a b^{2} d e^{2}\right )} x\right )} \log \left (e x + d\right )}{2 \, {\left (a b^{4} d^{6} - 4 \, a^{2} b^{3} d^{5} e + 6 \, a^{3} b^{2} d^{4} e^{2} - 4 \, a^{4} b d^{3} e^{3} + a^{5} d^{2} e^{4} + {\left (b^{5} d^{4} e^{2} - 4 \, a b^{4} d^{3} e^{3} + 6 \, a^{2} b^{3} d^{2} e^{4} - 4 \, a^{3} b^{2} d e^{5} + a^{4} b e^{6}\right )} x^{3} + {\left (2 \, b^{5} d^{5} e - 7 \, a b^{4} d^{4} e^{2} + 8 \, a^{2} b^{3} d^{3} e^{3} - 2 \, a^{3} b^{2} d^{2} e^{4} - 2 \, a^{4} b d e^{5} + a^{5} e^{6}\right )} x^{2} + {\left (b^{5} d^{6} - 2 \, a b^{4} d^{5} e - 2 \, a^{2} b^{3} d^{4} e^{2} + 8 \, a^{3} b^{2} d^{3} e^{3} - 7 \, a^{4} b d^{2} e^{4} + 2 \, a^{5} d e^{5}\right )} x\right )}} \]

[In]

integrate(1/(e*x+d)^3/(b^2*x^2+2*a*b*x+a^2),x, algorithm="fricas")

[Out]

-1/2*(2*b^3*d^3 + 3*a*b^2*d^2*e - 6*a^2*b*d*e^2 + a^3*e^3 + 6*(b^3*d*e^2 - a*b^2*e^3)*x^2 + 3*(3*b^3*d^2*e - 2
*a*b^2*d*e^2 - a^2*b*e^3)*x + 6*(b^3*e^3*x^3 + a*b^2*d^2*e + (2*b^3*d*e^2 + a*b^2*e^3)*x^2 + (b^3*d^2*e + 2*a*
b^2*d*e^2)*x)*log(b*x + a) - 6*(b^3*e^3*x^3 + a*b^2*d^2*e + (2*b^3*d*e^2 + a*b^2*e^3)*x^2 + (b^3*d^2*e + 2*a*b
^2*d*e^2)*x)*log(e*x + d))/(a*b^4*d^6 - 4*a^2*b^3*d^5*e + 6*a^3*b^2*d^4*e^2 - 4*a^4*b*d^3*e^3 + a^5*d^2*e^4 +
(b^5*d^4*e^2 - 4*a*b^4*d^3*e^3 + 6*a^2*b^3*d^2*e^4 - 4*a^3*b^2*d*e^5 + a^4*b*e^6)*x^3 + (2*b^5*d^5*e - 7*a*b^4
*d^4*e^2 + 8*a^2*b^3*d^3*e^3 - 2*a^3*b^2*d^2*e^4 - 2*a^4*b*d*e^5 + a^5*e^6)*x^2 + (b^5*d^6 - 2*a*b^4*d^5*e - 2
*a^2*b^3*d^4*e^2 + 8*a^3*b^2*d^3*e^3 - 7*a^4*b*d^2*e^4 + 2*a^5*d*e^5)*x)

Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 632 vs. \(2 (97) = 194\).

Time = 0.92 (sec) , antiderivative size = 632, normalized size of antiderivative = 5.75 \[ \int \frac {1}{(d+e x)^3 \left (a^2+2 a b x+b^2 x^2\right )} \, dx=\frac {3 b^{2} e \log {\left (x + \frac {- \frac {3 a^{5} b^{2} e^{6}}{\left (a e - b d\right )^{4}} + \frac {15 a^{4} b^{3} d e^{5}}{\left (a e - b d\right )^{4}} - \frac {30 a^{3} b^{4} d^{2} e^{4}}{\left (a e - b d\right )^{4}} + \frac {30 a^{2} b^{5} d^{3} e^{3}}{\left (a e - b d\right )^{4}} - \frac {15 a b^{6} d^{4} e^{2}}{\left (a e - b d\right )^{4}} + 3 a b^{2} e^{2} + \frac {3 b^{7} d^{5} e}{\left (a e - b d\right )^{4}} + 3 b^{3} d e}{6 b^{3} e^{2}} \right )}}{\left (a e - b d\right )^{4}} - \frac {3 b^{2} e \log {\left (x + \frac {\frac {3 a^{5} b^{2} e^{6}}{\left (a e - b d\right )^{4}} - \frac {15 a^{4} b^{3} d e^{5}}{\left (a e - b d\right )^{4}} + \frac {30 a^{3} b^{4} d^{2} e^{4}}{\left (a e - b d\right )^{4}} - \frac {30 a^{2} b^{5} d^{3} e^{3}}{\left (a e - b d\right )^{4}} + \frac {15 a b^{6} d^{4} e^{2}}{\left (a e - b d\right )^{4}} + 3 a b^{2} e^{2} - \frac {3 b^{7} d^{5} e}{\left (a e - b d\right )^{4}} + 3 b^{3} d e}{6 b^{3} e^{2}} \right )}}{\left (a e - b d\right )^{4}} + \frac {- a^{2} e^{2} + 5 a b d e + 2 b^{2} d^{2} + 6 b^{2} e^{2} x^{2} + x \left (3 a b e^{2} + 9 b^{2} d e\right )}{2 a^{4} d^{2} e^{3} - 6 a^{3} b d^{3} e^{2} + 6 a^{2} b^{2} d^{4} e - 2 a b^{3} d^{5} + x^{3} \cdot \left (2 a^{3} b e^{5} - 6 a^{2} b^{2} d e^{4} + 6 a b^{3} d^{2} e^{3} - 2 b^{4} d^{3} e^{2}\right ) + x^{2} \cdot \left (2 a^{4} e^{5} - 2 a^{3} b d e^{4} - 6 a^{2} b^{2} d^{2} e^{3} + 10 a b^{3} d^{3} e^{2} - 4 b^{4} d^{4} e\right ) + x \left (4 a^{4} d e^{4} - 10 a^{3} b d^{2} e^{3} + 6 a^{2} b^{2} d^{3} e^{2} + 2 a b^{3} d^{4} e - 2 b^{4} d^{5}\right )} \]

[In]

integrate(1/(e*x+d)**3/(b**2*x**2+2*a*b*x+a**2),x)

[Out]

3*b**2*e*log(x + (-3*a**5*b**2*e**6/(a*e - b*d)**4 + 15*a**4*b**3*d*e**5/(a*e - b*d)**4 - 30*a**3*b**4*d**2*e*
*4/(a*e - b*d)**4 + 30*a**2*b**5*d**3*e**3/(a*e - b*d)**4 - 15*a*b**6*d**4*e**2/(a*e - b*d)**4 + 3*a*b**2*e**2
 + 3*b**7*d**5*e/(a*e - b*d)**4 + 3*b**3*d*e)/(6*b**3*e**2))/(a*e - b*d)**4 - 3*b**2*e*log(x + (3*a**5*b**2*e*
*6/(a*e - b*d)**4 - 15*a**4*b**3*d*e**5/(a*e - b*d)**4 + 30*a**3*b**4*d**2*e**4/(a*e - b*d)**4 - 30*a**2*b**5*
d**3*e**3/(a*e - b*d)**4 + 15*a*b**6*d**4*e**2/(a*e - b*d)**4 + 3*a*b**2*e**2 - 3*b**7*d**5*e/(a*e - b*d)**4 +
 3*b**3*d*e)/(6*b**3*e**2))/(a*e - b*d)**4 + (-a**2*e**2 + 5*a*b*d*e + 2*b**2*d**2 + 6*b**2*e**2*x**2 + x*(3*a
*b*e**2 + 9*b**2*d*e))/(2*a**4*d**2*e**3 - 6*a**3*b*d**3*e**2 + 6*a**2*b**2*d**4*e - 2*a*b**3*d**5 + x**3*(2*a
**3*b*e**5 - 6*a**2*b**2*d*e**4 + 6*a*b**3*d**2*e**3 - 2*b**4*d**3*e**2) + x**2*(2*a**4*e**5 - 2*a**3*b*d*e**4
 - 6*a**2*b**2*d**2*e**3 + 10*a*b**3*d**3*e**2 - 4*b**4*d**4*e) + x*(4*a**4*d*e**4 - 10*a**3*b*d**2*e**3 + 6*a
**2*b**2*d**3*e**2 + 2*a*b**3*d**4*e - 2*b**4*d**5))

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 386 vs. \(2 (108) = 216\).

Time = 0.21 (sec) , antiderivative size = 386, normalized size of antiderivative = 3.51 \[ \int \frac {1}{(d+e x)^3 \left (a^2+2 a b x+b^2 x^2\right )} \, dx=-\frac {3 \, b^{2} e \log \left (b x + a\right )}{b^{4} d^{4} - 4 \, a b^{3} d^{3} e + 6 \, a^{2} b^{2} d^{2} e^{2} - 4 \, a^{3} b d e^{3} + a^{4} e^{4}} + \frac {3 \, b^{2} e \log \left (e x + d\right )}{b^{4} d^{4} - 4 \, a b^{3} d^{3} e + 6 \, a^{2} b^{2} d^{2} e^{2} - 4 \, a^{3} b d e^{3} + a^{4} e^{4}} - \frac {6 \, b^{2} e^{2} x^{2} + 2 \, b^{2} d^{2} + 5 \, a b d e - a^{2} e^{2} + 3 \, {\left (3 \, b^{2} d e + a b e^{2}\right )} x}{2 \, {\left (a b^{3} d^{5} - 3 \, a^{2} b^{2} d^{4} e + 3 \, a^{3} b d^{3} e^{2} - a^{4} d^{2} e^{3} + {\left (b^{4} d^{3} e^{2} - 3 \, a b^{3} d^{2} e^{3} + 3 \, a^{2} b^{2} d e^{4} - a^{3} b e^{5}\right )} x^{3} + {\left (2 \, b^{4} d^{4} e - 5 \, a b^{3} d^{3} e^{2} + 3 \, a^{2} b^{2} d^{2} e^{3} + a^{3} b d e^{4} - a^{4} e^{5}\right )} x^{2} + {\left (b^{4} d^{5} - a b^{3} d^{4} e - 3 \, a^{2} b^{2} d^{3} e^{2} + 5 \, a^{3} b d^{2} e^{3} - 2 \, a^{4} d e^{4}\right )} x\right )}} \]

[In]

integrate(1/(e*x+d)^3/(b^2*x^2+2*a*b*x+a^2),x, algorithm="maxima")

[Out]

-3*b^2*e*log(b*x + a)/(b^4*d^4 - 4*a*b^3*d^3*e + 6*a^2*b^2*d^2*e^2 - 4*a^3*b*d*e^3 + a^4*e^4) + 3*b^2*e*log(e*
x + d)/(b^4*d^4 - 4*a*b^3*d^3*e + 6*a^2*b^2*d^2*e^2 - 4*a^3*b*d*e^3 + a^4*e^4) - 1/2*(6*b^2*e^2*x^2 + 2*b^2*d^
2 + 5*a*b*d*e - a^2*e^2 + 3*(3*b^2*d*e + a*b*e^2)*x)/(a*b^3*d^5 - 3*a^2*b^2*d^4*e + 3*a^3*b*d^3*e^2 - a^4*d^2*
e^3 + (b^4*d^3*e^2 - 3*a*b^3*d^2*e^3 + 3*a^2*b^2*d*e^4 - a^3*b*e^5)*x^3 + (2*b^4*d^4*e - 5*a*b^3*d^3*e^2 + 3*a
^2*b^2*d^2*e^3 + a^3*b*d*e^4 - a^4*e^5)*x^2 + (b^4*d^5 - a*b^3*d^4*e - 3*a^2*b^2*d^3*e^2 + 5*a^3*b*d^2*e^3 - 2
*a^4*d*e^4)*x)

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 254 vs. \(2 (108) = 216\).

Time = 0.26 (sec) , antiderivative size = 254, normalized size of antiderivative = 2.31 \[ \int \frac {1}{(d+e x)^3 \left (a^2+2 a b x+b^2 x^2\right )} \, dx=-\frac {3 \, b^{3} e \log \left ({\left | b x + a \right |}\right )}{b^{5} d^{4} - 4 \, a b^{4} d^{3} e + 6 \, a^{2} b^{3} d^{2} e^{2} - 4 \, a^{3} b^{2} d e^{3} + a^{4} b e^{4}} + \frac {3 \, b^{2} e^{2} \log \left ({\left | e x + d \right |}\right )}{b^{4} d^{4} e - 4 \, a b^{3} d^{3} e^{2} + 6 \, a^{2} b^{2} d^{2} e^{3} - 4 \, a^{3} b d e^{4} + a^{4} e^{5}} - \frac {2 \, b^{3} d^{3} + 3 \, a b^{2} d^{2} e - 6 \, a^{2} b d e^{2} + a^{3} e^{3} + 6 \, {\left (b^{3} d e^{2} - a b^{2} e^{3}\right )} x^{2} + 3 \, {\left (3 \, b^{3} d^{2} e - 2 \, a b^{2} d e^{2} - a^{2} b e^{3}\right )} x}{2 \, {\left (b d - a e\right )}^{4} {\left (b x + a\right )} {\left (e x + d\right )}^{2}} \]

[In]

integrate(1/(e*x+d)^3/(b^2*x^2+2*a*b*x+a^2),x, algorithm="giac")

[Out]

-3*b^3*e*log(abs(b*x + a))/(b^5*d^4 - 4*a*b^4*d^3*e + 6*a^2*b^3*d^2*e^2 - 4*a^3*b^2*d*e^3 + a^4*b*e^4) + 3*b^2
*e^2*log(abs(e*x + d))/(b^4*d^4*e - 4*a*b^3*d^3*e^2 + 6*a^2*b^2*d^2*e^3 - 4*a^3*b*d*e^4 + a^4*e^5) - 1/2*(2*b^
3*d^3 + 3*a*b^2*d^2*e - 6*a^2*b*d*e^2 + a^3*e^3 + 6*(b^3*d*e^2 - a*b^2*e^3)*x^2 + 3*(3*b^3*d^2*e - 2*a*b^2*d*e
^2 - a^2*b*e^3)*x)/((b*d - a*e)^4*(b*x + a)*(e*x + d)^2)

Mupad [B] (verification not implemented)

Time = 10.10 (sec) , antiderivative size = 329, normalized size of antiderivative = 2.99 \[ \int \frac {1}{(d+e x)^3 \left (a^2+2 a b x+b^2 x^2\right )} \, dx=\frac {\frac {-a^2\,e^2+5\,a\,b\,d\,e+2\,b^2\,d^2}{2\,\left (a^3\,e^3-3\,a^2\,b\,d\,e^2+3\,a\,b^2\,d^2\,e-b^3\,d^3\right )}+\frac {3\,b\,x\,\left (a\,e^2+3\,b\,d\,e\right )}{2\,\left (a^3\,e^3-3\,a^2\,b\,d\,e^2+3\,a\,b^2\,d^2\,e-b^3\,d^3\right )}+\frac {3\,b^2\,e^2\,x^2}{a^3\,e^3-3\,a^2\,b\,d\,e^2+3\,a\,b^2\,d^2\,e-b^3\,d^3}}{x\,\left (b\,d^2+2\,a\,e\,d\right )+a\,d^2+x^2\,\left (a\,e^2+2\,b\,d\,e\right )+b\,e^2\,x^3}-\frac {6\,b^2\,e\,\mathrm {atanh}\left (\frac {a^4\,e^4-2\,a^3\,b\,d\,e^3+2\,a\,b^3\,d^3\,e-b^4\,d^4}{{\left (a\,e-b\,d\right )}^4}+\frac {2\,b\,e\,x\,\left (a^3\,e^3-3\,a^2\,b\,d\,e^2+3\,a\,b^2\,d^2\,e-b^3\,d^3\right )}{{\left (a\,e-b\,d\right )}^4}\right )}{{\left (a\,e-b\,d\right )}^4} \]

[In]

int(1/((d + e*x)^3*(a^2 + b^2*x^2 + 2*a*b*x)),x)

[Out]

((2*b^2*d^2 - a^2*e^2 + 5*a*b*d*e)/(2*(a^3*e^3 - b^3*d^3 + 3*a*b^2*d^2*e - 3*a^2*b*d*e^2)) + (3*b*x*(a*e^2 + 3
*b*d*e))/(2*(a^3*e^3 - b^3*d^3 + 3*a*b^2*d^2*e - 3*a^2*b*d*e^2)) + (3*b^2*e^2*x^2)/(a^3*e^3 - b^3*d^3 + 3*a*b^
2*d^2*e - 3*a^2*b*d*e^2))/(x*(b*d^2 + 2*a*d*e) + a*d^2 + x^2*(a*e^2 + 2*b*d*e) + b*e^2*x^3) - (6*b^2*e*atanh((
a^4*e^4 - b^4*d^4 + 2*a*b^3*d^3*e - 2*a^3*b*d*e^3)/(a*e - b*d)^4 + (2*b*e*x*(a^3*e^3 - b^3*d^3 + 3*a*b^2*d^2*e
 - 3*a^2*b*d*e^2))/(a*e - b*d)^4))/(a*e - b*d)^4